

Volumetric Brain Analysis in Neurosurgery

Jason G. Mandell, MS, MD

10th Symposium of the International Hydrocephalus
Imaging Working Group
Banff, Canada, September 18, 2015

Is your brain really necessary?

-John Lorber (1980)

University student with in IQ of 126 "His cranium is filled mainly with cerebrospinal fluid."

Scans of normal and hydrocephalic brains

A horizontal scan across the brain shows the ventricles as narrow slits in a normal individual and large cavities in a hydrocephalic patient.

Which one is doing better after ventriculostomy?

Male 9 months

Female 6 months

Normalized Fluid Vol = 6.5

Normalized Brain Vol = 0.67

Bailey Average = 2.7

Normalized Fluid Vol = 44

Normalized Brain Vol = 0.86

Bailey Average = 8.3

Outline

 Methods of image analysis (particle filter segmentation)

Measurements of hydrocephalus

 Neurocognitive outcomes (our brain is necessary)

Image Segmentation

- 1) Classification
- 2) Edge Tracing
- 3) Segmentation

Image Segmentation: Classification

- What is the likelihood that a voxel contains brain or fluid?
- Based on 2D neighborhood around voxel

Image Segmentation: Final Step

From the extracted area

- What is brain?
- What is fluid?

Normative Brain Growth

Normative Brain Growth

Do brain and fluid volumes predict neurocognitive outcome in children with hydrocephalus?

Warf et al (J Neurosurg Peds 2009) Does treatment correlate with outcome?

FOHR = (A+B)/(2*C)

- 93 Ugandan Children with SB
- No treatment, ETV/CPC, VPS
- Different treatments Did Not Correlate With Cognitive Performance (BSID)
- FOHR Did Not Correlate With Cognitive Performance (BSID)

Kulkarni et al, Pediatr Neurosurg 1999;31:65-70

Our Study Cohort

- 33 patients ages 2 weeks to 6 years
 - -No treatment (7), ETV/CPC (17), VPS (9)
 - All patients were analyzed together
- Brain and fluid volumes measured from CT
- Modified BSID-III administered postoperatively (mean age 15.6 months)

Normal Controls

Brain Volumes

CSF Volumes

FOHR as an estimate of volume

FOHR does not correlate well with brain

FOHR correlates very well with fluid

Brain & fluid develops independently

Fluid volume does not correlate with brain volume

Normalized brain and fluid correlate, but does not fit linear curve well

	Normalized Brain Volume		Normalized CSF Volume	
	R	р	R	р
Fine Motor	0.40	0.03	-0.45	0.01
Gross Motor	0.14	0.45	-0.12	0.53
Expressive Communication	0.33	0.08	-0.32	0.08
Receptive Communication	0.06	0.77	-0.25	0.18
Cognitive	0.36	0.05	-0.31	0.09
Social-Emotional	0.25	0.20	0.14	0.50

1) Brain and fluid develop independently

2) Very large CSF volumes (40-100x normal) lead to poor cognitive outcomes

- 3) At lower CSF volumes, normal ventricle size does not equal normal brain development
- 4) At these levels, normal brain volume is more important than normal fluid volume

5) We treat hydrocephalus based on fluid

Growth of brain determines cognitive development

Future Directions

- Particle Filter segmention
 - Move towards more automated segmentation
 - 3D modelling
- Hydrocephalus
 - NIH surgical trial in Africa of VP shunt treatment versus ETV/CPC applying these volumetric methods based on intention to treat and neurocognitive outcome

Co-Authors

Particle Filter Segmentation

Jack Langelaan, PhD

Andrew Webb, PhD

Steven Schiff, MD, PhD

Hydrocephalus & Cognitive Outcome

Abhaya Kulkarni, MD, PhD

Benjamin Warf, MD

Steven Schiff, MD, PhD

Thank you