Quantification of CSF Flow at the Aqueduct with Phase Contrast MR Imaging

Kezhou Wang, Ph.D Principle Software Engineer Director of Engineering and Research VasSol Inc.

List of Contents

Traditional MRA:

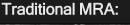
VasSol's Quantitative MRA™

♦ 1. Introduction

- CSF PCMR Protocol Optimization and Validation with Phantom studies
- 3. Volunteer studies on different scanners
- ♦ 4. Problems and Future's work
- ♦ 5. Summary

Traditional MRA:

VasSol's Quantitative MRA™


1. Introduction

- History of CSF flow measurement with PCMR imaging
- PCMR Technology Improvements
 - Image Quality
 - Less Noise, Higher Resolution
 - Scanning Time is reduced
 - Multi-Channel Coil/Multi Elements
 - Parallel Imaging, View Sharing
- Important Factors in PCMR imaging

Brief History of Flow Quantification with PCMR

- Cardiac Applications, O'Donnell M, Med Phys

– Cerebral Vessel Blood Flow, Charbel FT, Magn

VasSol's Quantitative MRA™

Reson Imaging, 2000

♦ 1. PCMR - concept

1985.

- Singer JR, Science 1959

♦ 2. Blood flow from 1980s.

William G. Bradley, Radiology 1992.
 Neuroradiology, 1996

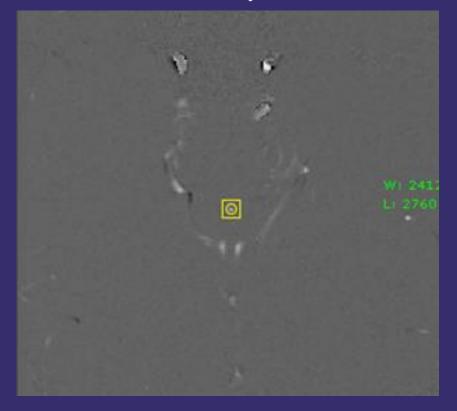

♦ 4. 2D and 4D PCMR

Image Quality Improvement With new PCMR protocols

Copied from Bradley CSF Paper 1992

Sample image with new protocol from GE Discovery 3T 750, 2013

30 slices, 14 Minutes

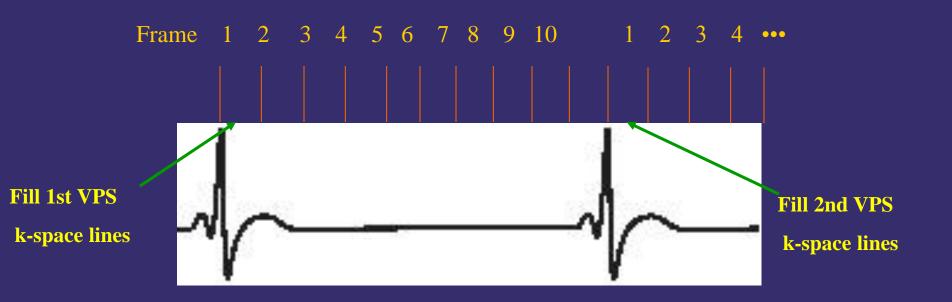
30 slices, 1.5 Minutes

Scanning Time on GE Discovery 3T 750 MR Scanner

View Per Segment (VPS)	Phases	Scanning Time
2	40	3 minutes 10 seconds
2	30	3 minutes 6 seconds
4	40	1 minutes 40 seconds
4	30	1 minutes 35 seconds
16	12	Less than 30 seconds

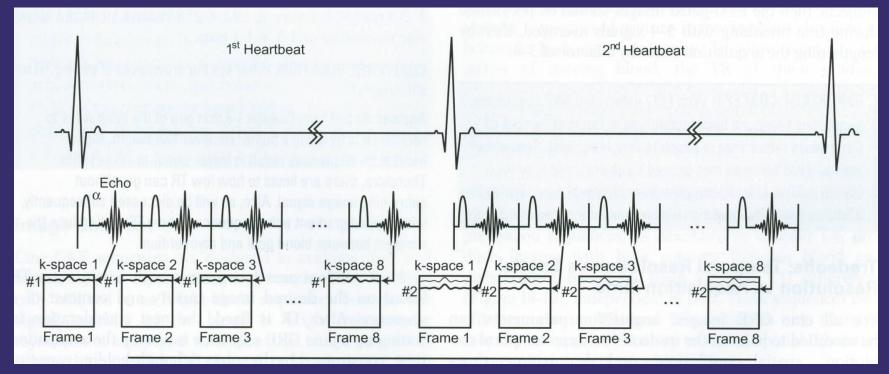
Matrix= 256 x 244, FOV/PFOV = 120/120, VENC = 20

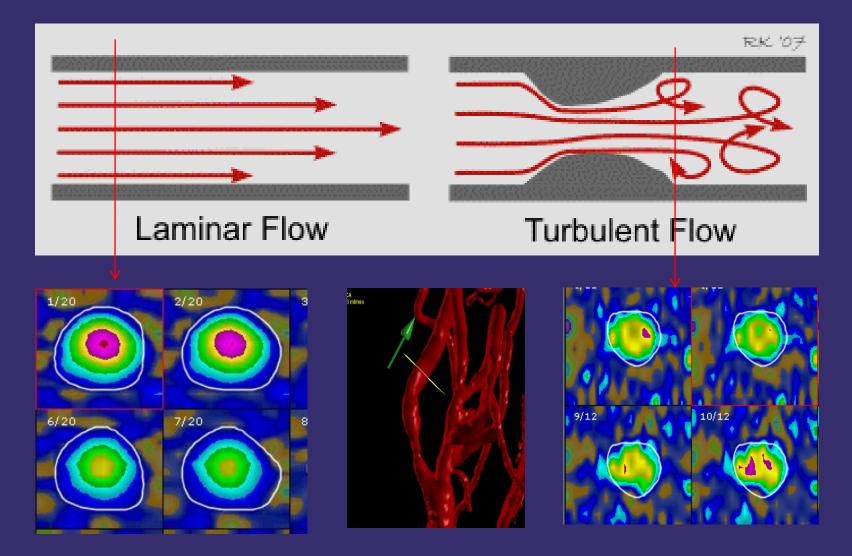
VasSol's Quantitative MRA™



Important Factors in Measurement with PCMR Imaging

- ◆ Temporal resolution ~ 0.5mm ◆ Spatial resolution ~25ms - 35ms ◆ Scanning time ~ 1 minute Measurement plane location ♦ ~Straight Measurement plane direction ~Perpendicular
- Aliasing correction


Retrospectively gated fast 2D phase contrast (FastCine)


- The time resolution T of such a phase-contrast sequence is defined as follows: T = 2 * TR * VPS
- Problem: Arrhythmia patient

Multiple Heart Beats to Fill the Images

Multiple PCMR images cover a cardiac cycle
ECG/ peripheral gating
Each heartbeat, a few lines of data collected
Need multiple cardiac cycles to fill the whole images

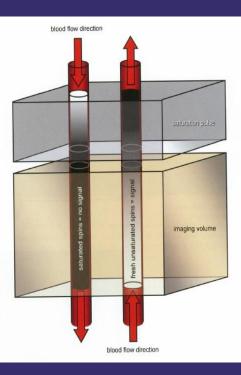
Measurement location is important

2D PCMR Plane Position?

Traditional MRA:

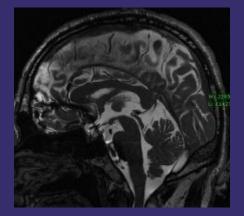
VasSol's Quantitative MRA™

VasSol

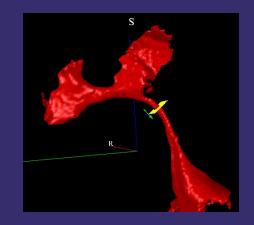

Bad

Good

How?

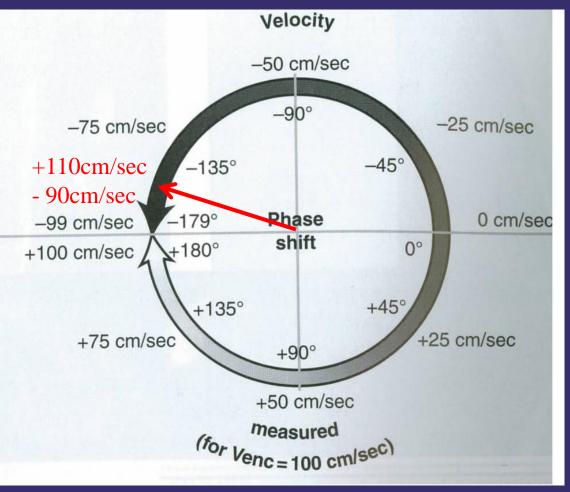

QMRA (NOVA) 3D Localizer

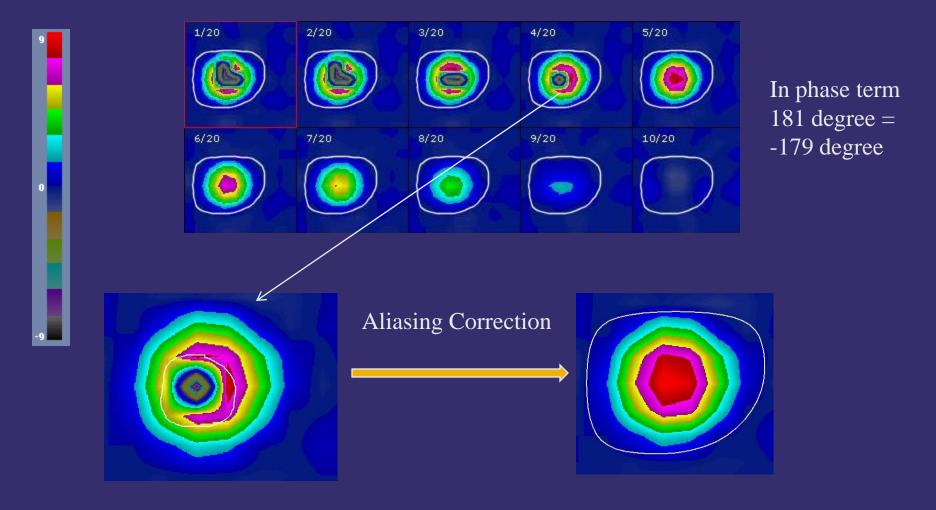
TOF MRA



GE FIESTA

NOVA 3D Localizer




Velocity Encoding(VENC) and Aliasing

Phase shift proportional to velocity

•Phase Range (-180° to 180°) •Flow Range (-Venc to Venc) •Forward flow (positive phase-white on the image) •Reverse flow (negative phase-black on the image)

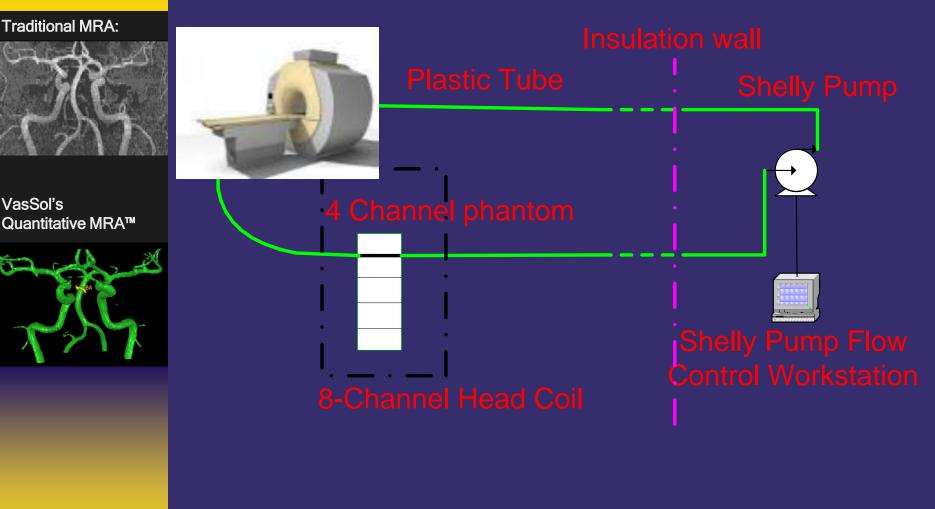
Identify and Correct Flow Aliasing

VasSol's Quantitative MRA™

2. PCMR Protocol Optimization with Slow Flow Phantom

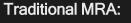
- 1. Difference between CSF and Blood Flow
- ♦ 2. Phantom Study Setup
- ♦ 3. Experiments
- ♦ 4. Results

VasSol's Quantitative MRA™


Physical Difference Between CSF and Blood Flow

Velocity

Blood Flow Velocity: ~100 cm/s


- CSF Flow Velocity: ~ 10 cm/s
- Flow Pattern
 - Blood Flow: uni-directional
 - CSF Flow: bi-directional, more complex
- Flow domain
 - Blood Flow: within blood vessels
 - CSF Flow: Ventricles and subarachnoid space

Flow Phantom Diagram

VasSol

PCMR Parameters

VasSol's Quantitative MRA™

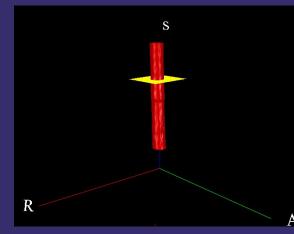
Flip Angle 10-15-20
VENC 10-20
Number of Excitations (NEX)2-6
View Per Segment (VPS) 2-16
Number of Phases 12-24
Resolutions / FOV

PCMR parameters

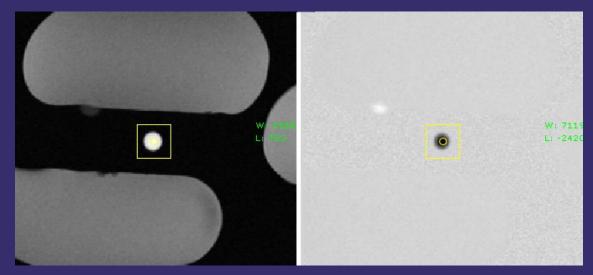
Traditional MRA:

VasSol's Quantitative MRA™

Flow Rate	1 ml/s	2ml/s	3ml/s	4ml/s
	(60 ml/min)	(120	(180	(240
		ml/min)	ml/min)	ml/min)
Venc	10	20	20	20
Number of	2, 4, 6	2, 4, 6	2,4,6	2,4,6
Excitations				
View per Segment	2, 4, 6, 8	2, 4, 6, 8	2, 4, 6,8	4, 6, 8, 16
Cine Phase	12/24	12/24	12/24	12/24

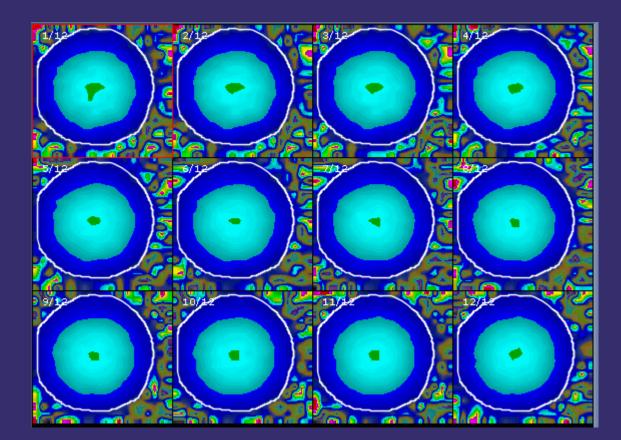


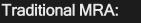
Phantom PCMR Images



VasSol's Quantitative MRA™

3D model from TOF

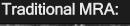



Magnitude Image

Phase Image


12 Flow Contours in a Cardiac Cycle

VasSol's Quantitative MRA™



Phantom results

Table 1. Phantom Actual Flow Rate in Comparison with the Flow Rate from PCMR

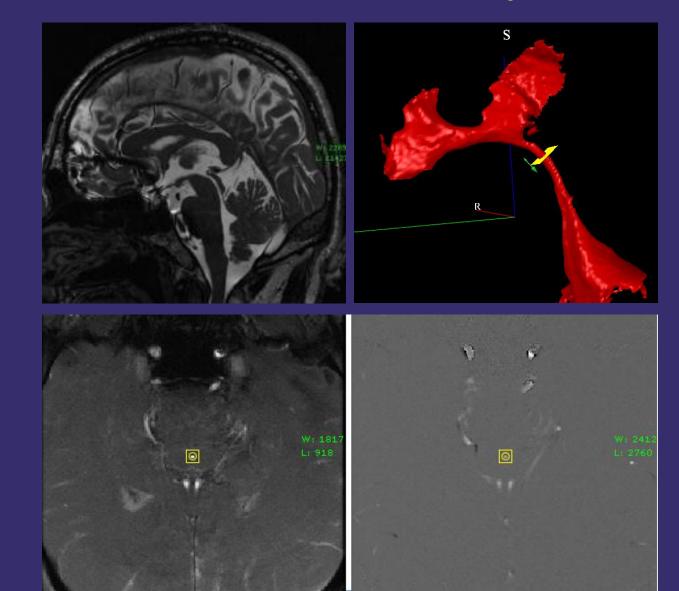
FlowAvgRateVelocity		12 Phases (mL/min)			24 Phases (mL/min)				
(mL/min) (cm/s)	(cm/s)	Min	Max	Avg	Error (%)	Min	Max	Avg	Error (%)
60	1.99	54.5	57.1	55.58	-7.36	54.7	56.5	55.37	-7.72
120	3.98	113	114	113.5	-5.41	112.1	115.3	113.5	-5.40
180	5.97	173.7	176.3	174.57		172.1	175.5	174.0	-3.32
240	7.96	232.2	236.1	233.98	-2.51	218.2	236.8	232.7	-3.04

3. Optimize the protocolparameters with volunteers

VasSol's Quantitative MRA™

- Spatial Resolution
 - Partial volume effect
 - Limited by the hardware
- Slow Flow
 - Eddy current
 - Background Noise
- Temporal resolution
 - Missing phases

VasSol's Quantitative MRA™



3. Optimize the protocol parameters with volunteers(Continue)
• Peripheral gating – EKG gating
• Reproducibility

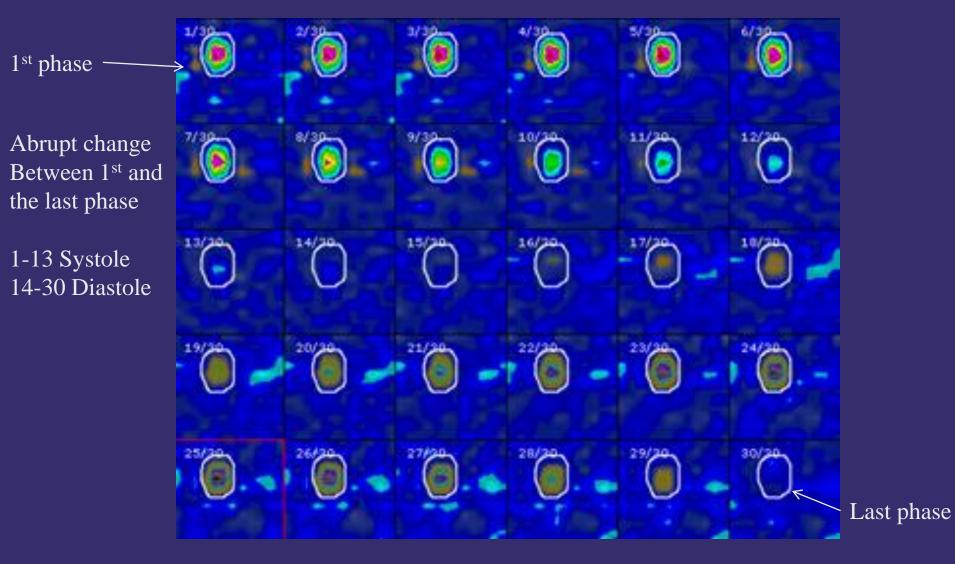
– The same volunteer on the same scanner

- Inter scanner differences
 - Different magnets, 1.5T, 3T from the same vendor
 - Different scanners from different vendors

Volunteer Study

Traditional MRA:

VasSol's Quantitative MRA™



Comparison of the Stroke Volume – NPH Patient – Different Scanners

	Stroke Volume- Siemens (μm/cycle)	Stroke Volume- GE (μm/cycle)	Difference
VENC = 10	(+65.8/-59.1) 62.5 (aliasing corrected)	(+106.4/-94.9)100.6	61%
VENC = 20	(+42.8/-53.1) 48	(+90.7/-77.3) 83.8	74%
VENC = 30	(+52.6/-57.3) 54.6	(+121/-76.6) 98.8	81%

Siemens Parameters: FOV =147x147, Matrix 384x384, pixel size=0.38mm x 0.38mm, slice thickness = 3mm GE Parameters: FOV=240x216, Matrix 256x256, pixel size=0.94mm x 0.84mm, slice thickness = 5mm

Missing Phases on GE scanner

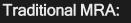
Parameter Changes

Traditional MRA:

VasSol's Quantitative MRA™

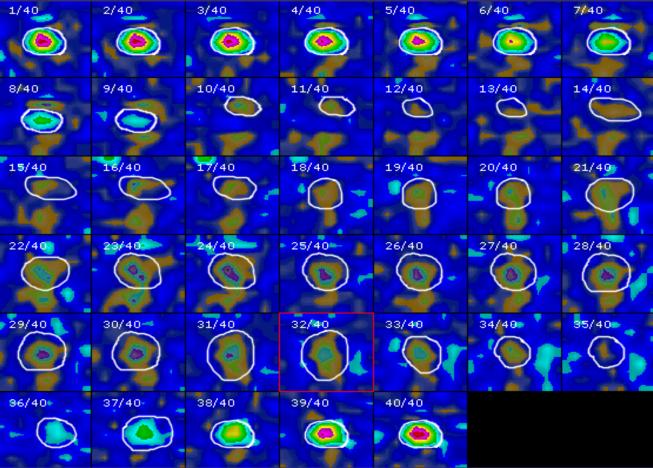
Decrease View Per Segment (VPS)
 – From 8,16 to 2,4

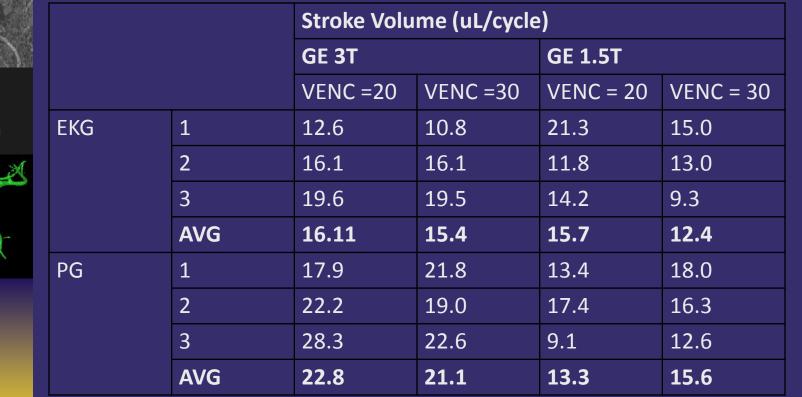
Increase Phase Number


- From 30 to 40

Temporal Resolution

– Phase#/VPS


Increase the phase number from 30 to 40 on GE scanner


VasSol's Quantitative MRA™

Traditional MRA:

VasSol's Quantitative MRA™

Stroke Volume Repeatability at UIC- GE Discovery 3T 750 V22

Traditional MRA:

VasSol's Quantitative MRA™

	NEX/VPS	Phase #	Stroke Volume (μL /cycle)
Volunteer 1	2/2	40	23.1(24.9/-21.3)
	2/4	40	22.4(27.2/-17.6)
Volunteer 2	2/2	40	16.3(21/-11.5)
	2/4	40	19.2(24.5/-13.9)

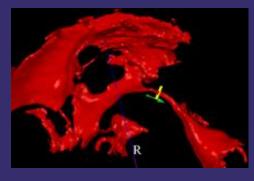
	Wingsong Hospital - Siemens 3T Verio VB 17						
Traditional MRA:	scanner VENC / Rescan Times		1st Volunteer (μL/cycle)	2nd Volunteer (μL/cycle)	3rd Volunteer (μL/cycle)		
ALL	Venc	1	14.2	2.2	78.9		
$A \gamma h$	=20	2	15.5	1.8	65.5		
		3	15.0	1.9	75.3		
VasSol's Quantitative MRA™		4	15.0	1.7	74.3		
the shared	Mean	(\pm STD)	14.9(±0.537)	1.9(±0.21)	73.5(± 5.68)		
Ç 🗛	Venc	1	10.4	1.8	*66.0		
TAT	=10	2	13.1	1.9	*66.3		
		3	11.3	1.8	*63.5		
		4	11.1	1.7	*59.1		
	Mean	(\pm STD)	11.5(±1.15)	1.8(\pm 0.081)	63.7(± 3.33)		

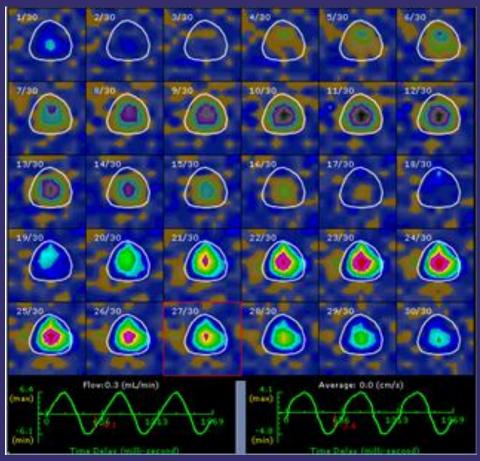
Stroke Volume Repeatability at

CSF Flow Difference betweenGE and Siemens ScannersGE and Siemens ScannersSame VolunteerStrokeSystolicNet FlowPeakAverage

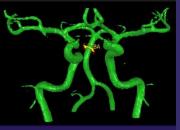
VasSol's Quantitative MRA™

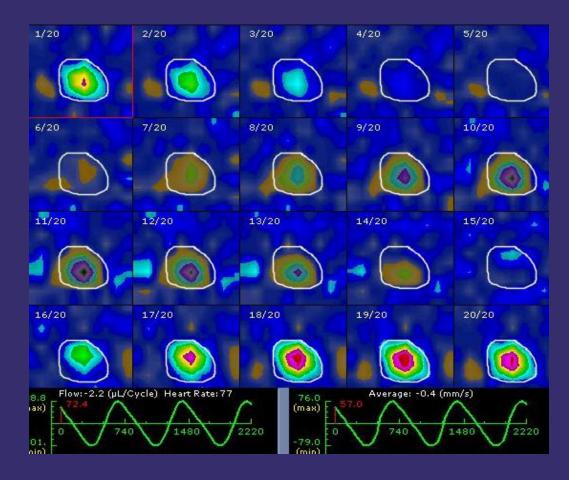
	Stroke Volume (µL/cycle)	Systolic /Diastolic Volume (µL/cycle)	Net Flow (µL/cycle)	Peak Systolic /Diastolic Velocity (mm/s)	Average Peak Systolic/Dias tolic Velocity (mm/s)
Siemens	32.5	32.8/-32.3	0.4	65/-48	37.9/-28.3
GE	42.0	44.3/-39.7	4.5	84/-53	47.3/-20.8
Difference	29%	35%/23%		29%/11%	25%/36%





VasSol's Quantitative MRA™




Flow Contours and waveform with 20 Phase- Siemens scanner

Traditional MRA:

VasSol's Quantitative MRA™

VasSol's Quantitative MRA™

parameters

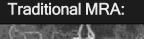
-GE Scanner:

Phase = 40, NEX = 2, VPS = 2

Flip angle =20, VENC = 20 Matrix 256 x 256, FOV/PFOV = 120/120 Thickness = 4mm.

Suggested CSF PCMR protocol

-SIEMES Scanner:


Phase = 30, NEX = 2-4, VPS = 2-5,

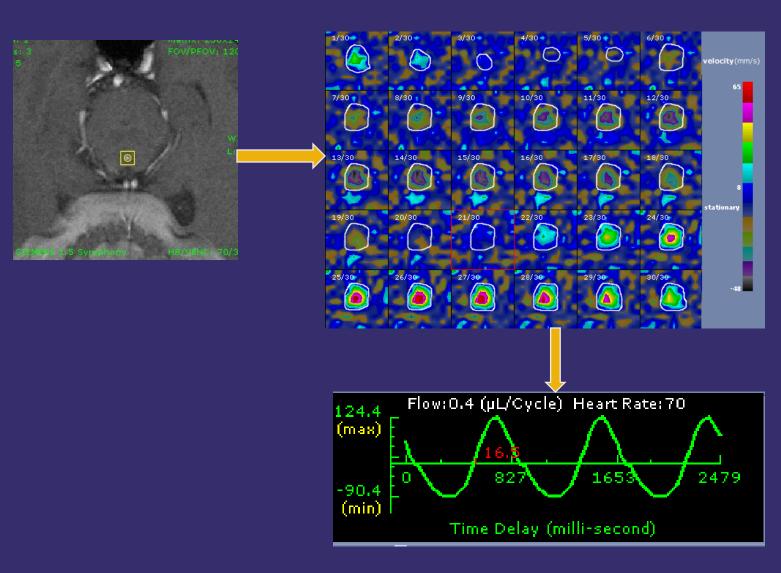
Flip angle =20, VENC = 20 Matrix 256 x 256, FOV/PFOV = 120/120 Thickness =4mm.

4. Problems and Further Work

- Pulstile slow flow phantom
 - Smaller diameters
- Boundary Extraction Algorithms
 - Robust
 - Accurate
- Background Noise Suppression
 - Increase SNR
- Repeatability
 - Further optimize the protocols
 - On other scanners such as Philips and Toshiba

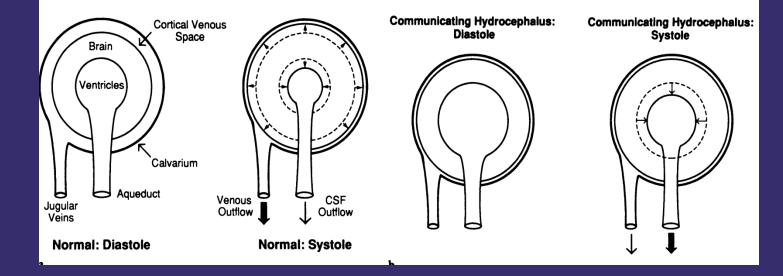


Boundary Inconsistence


Traditional MRA:

VasSol's Quantitative MRA™

VasSo

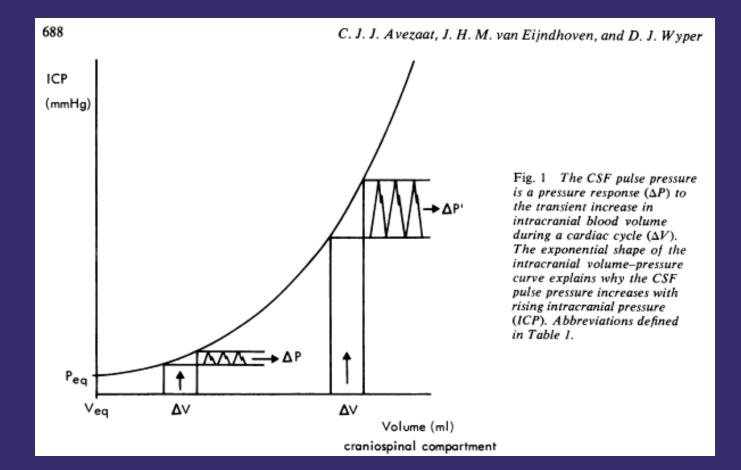

Hyperdynamic CSF flow Model

Traditional MRA:

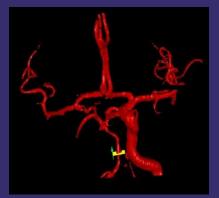
VasSol's Quantitative MRA™

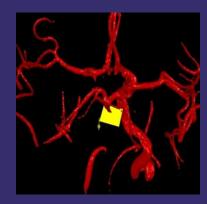
Copy of Figure 5 of Bradley, Radiology1991

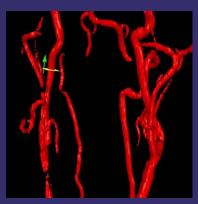
Cerebrospinal fluid pulse pressure and intracranial volume-pressure relationships

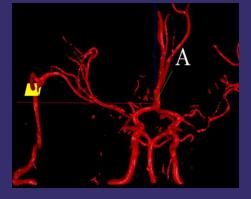

J Neurol Neurosurg Psychiatry. Aug 1979; 42(8): 687–700.

Traditional MRA:




VasSol's Quantitative MRA™





QMRA (NOVA) Applications

Basilar Stenosis

Basilar Oclussion

Right Carotid Stent

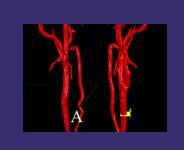
EC-IC Bypass

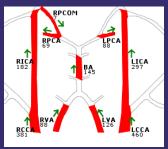
FDA approved

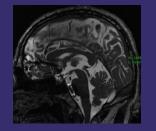
Accurate and non-invasive

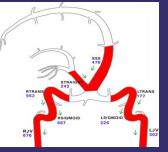
Improve the diagnosis and management of cerebrovascular patients Easy to use and fit in the clinical workflow

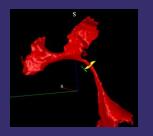
Thousands patients benefited each year around the world


Combination of Artery, Vein and CSF \rightarrow ICP ?


Traditional MRA:


VasSol's Quantitative MRA™





5. Summary - Quantitative Flow Assessment

- Review of important factors in PCMR imaging
- PCMR protocol parameters are optimized and validated for CSF flow measurement at the aqueduct
 - In vitro with phantom study
 - In vivo with volunteers
- Reproducibility of the stroke volume on different scanners
- Problems and future's work.

Traditional MRA:

VasSol's Quantitative MRA™

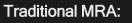
1. Singer Jr. Blood flow rates by NMR measurements. Science 1959; 130:1652-1653.

References


- 2. Moran PR. A flow zeugmotographic interlace for NMR imaging in humans. Magn Reson Imaging 1982; 1:197-203.
- 3. Wolfgang R. N. William G. Bradley, etc. Flow Dynamics of Cerebrospinal Fluid: Assessment with Phase-Contrast Velocity MR Imaging performed with Retrospective Cardiac Gating.
- 4. William G. Bradley. Normal-Pressure Hydrocephalus: Evaluation with Cerebrospinal Fluid Flow Measurements at MR Imaging.
- Sepideh Amin-Hanjani, MD; Xinjian Du, MD; Meide Zhao, PhD; Katherine Walsh, NP; Tim Malisch, M; Fady T. Charbel, MD. Use of Quantitative Magnetic Resonance Angiography to Stratify Stroke Risk in Symptomatic Vertebrobasilar Disease, Stroke. 2005;36:1140..
- Markus Chwajol, M.D., Alejandro Berenstein, M.D., Chandranath Sen M.D., David J. Langer, M.D. Occipital Artery to Posterior Inferior Cerebellar Artery Bypass for Treatment of Bilateral Vertebral Artery Occlusion: The Role of Quantitative Magnetic Resonance Angiography Non-invasive Optimal Vessel Analysis (NOVA). Neurosurgery 64E:779-E781, 2009.

Thanks and Acknowledgement

Traditional MRA:



VasSol's Quantitative MRA™

William Bradley, MD, UCSD
Joe Zhou, Ph.D, UIC
Xinjian Du, MD, UIC
Igor Mikityansky, MD, Windsong Radiology Group
Wei Sun, Ph.D. GE Medical
Lauren Ostergen, VasSol Inc

VasSol's Quantitative MRA™

Thank you!

