

CLINICAL APPLICATIONS USING MRI SPIN- LABELING TO MONITOR CSF MOVEMENT

J. Gordon McComb MD, Matt Borzage PhD, & Stefan Bluml PhD

Division of Neurosurgery and Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California

Use of Time-SLIP in a

Pediatric Population

Sagittal synostosis: 5 days of age

Sagittal synostosis: 3 mo old, preop

Sagittal synostosis: 5 mo old, 1 mo postop

Sagittal synostosis: 5 mo old, 1 mo postop

Sagittal synostosis: 5 mo old, 1 mo postop

Closed NTD: 7 mo, pre repair

Closed NTD: 7 mo, pre repair

Hydrocephalus, Chiari I, Syrinx: 4 yr 5 mo, pre ETV

Hydrocephalus: 6 mo, pre shunt

Hydrocephalus: 6 mo; 3 d post shunt

Hydrocephalus: 6 mo; 3 d post shunt

Hydrocephalus, 3rd ventricular arachnoid cyst: 9 mo, pre ETV and cyst fenestration

Hydrocephalus, 3rd ventricular arachnoid cyst: 10 mo; 6 d post ETV and cyst fenestration

Hydrocephalus, 3rd ventricular arachnoid cyst: 1 yr; pre shunt revision

Hydrocephalus, 3rd ventricular arachnoid cyst: 1 yr; pre shunt revision

Hydrocephalus, 3rd ventricular arachnoid cyst: 1 yr; 1 mo post shunt revision

Hydrocephalus, 3rd ventricular arachnoid cyst: 1 yr; 1 mo post shunt revision

Arachnoid cyst: 6.5 yr

Arachnoid cyst: 7 yr

Arachnoid cyst: 7 yr 8 mo

Arachnoid cyst: 7 yr 8 mo

Open NTD, Chiari II, shunted hydrocephalus: 27 mo

Open NTD, Chiari II, shunted hydrocephalus: 27 mo

Can be used anywhere in the central nervous system where there is CSF

HYDROCEPHALUS

- Aqueductal stenosis
- Obstruction at the foramina of Monro
- Outlets of fourth ventricle
- Within the ventricular system (multi-loculated)

HYDROCEPHALUS

- Define CSF drainage pathways and physiological factors that may alter drainage routes
 - Superior sagittal sinus
 - Basal cisterns/nerve sheaths

NORMAL PRESSURE HYDROCEPHALUS

- CSF flow through aqueduct
- ? Candidate for ETV
- ? Better determine which patients would benefit from shunting

THIRD VENTRICULOSTOMY (ETV)

- Preoperative evaluation of CSF flow through aqueduct & basal cisterns
- Success of ETV
- Follow-up of patency of ostium

THIRD VENTRICULOSTOMY (ETV)

 ? Subset of patients with hydrocephalus secondary to repaired open neural tube defects (myelomeningocele) who might be a candidate for ETV

VENTRICULOSTOMIES

- Placed for sub-arachnoid hemorrhage, trauma, tumors
- ? help to determine which patients will require a shunt

LOW OR NEGATIVE PRESSURE HYDROCEPHALUS

 Need to drain CSF at zero or a negative pressure, otherwise ventricles enlarge & patient becomes more symptomatic

Need to decrease size of ventricles

• ? related to change in compliance

CSF LEAKS

 Can be difficult to pinpoint site of leak

Sometimes not sure if CSF leak is present

ARACHNOID CYSTS

- ? why do they enlarge? Ball-valve mechanism
- Widened SAS over tip of temporal lobe, or an arachnoid cyst?
- Determine presence of communication with SAS
- ? large cisterna magna or cyst

ARACHNOID CYSTS

Monitor success of fenestration

 Why, with what appears to be a good fenestration at the time of surgery, one still needs to place a shunt?

TUMOR CYSTS

• ? loculated

COLLOID CYSTS

- ? degree of obstruction
- ? movable

PSEUDOTUMOR CEREBRI (BENIGN INTRACRANIAL HYPERTENSION)

- ? CSF problem
- ? Venous drainage problem
- ? Other factors
- ? Multiple causes with various substrates
- ? Effect of optic nerve fenestration

SHUNTS

- ? Able to visualize CSF flow within shunt
- ? Detect shunt malfunction
- ? Overdrainage

CHIARI I

- Observe CSF flow anterior/posterior to spinal cord
- ? Relate to symptoms headache
- ? Relate to development of syrinx formation
- Post-operative success especially as to syrinx size

CHIARI I

- ? Movement of CSF in syrinx & relation to change in size
- Determine if CSF movement at craniocervical junction subsequently becomes impaired
- Function of syringo-pleural/peritoneal shunt

SPINAL ARACHNOID CYSTS

- Diagnosis
- Success of fenestration

CSF MOVEMENT IN RELATION TO POSITION OF PATIENT

- With, but few exceptions, can only image horizontally
- See what changes occur:
 - Sitting
 - Standing
 - Head down

SUMMARY

 Time-SLIP technique enables observation of pulsatile and turbulent CSF flow under normal and pathophysiologic conditions.

 Will enable further understanding of hydrocephalus and its treatment.

Thank you

