

Pediatric Neurosurgery Utility of MRI in Assessing Animal Models of Hydrocephalus

James P. (Pat) McAllister II, PhD^{1,2}

¹Pediatric Neurosurgery, Primary Children's Medical Center, and ²Bioengineering, University of Utah, Salt Lake City, UT, USA

Disclosures

- No conflicts of interest
- Funding from NIH (1R13NS066643-01), BrainChild Foundation, Batterman Family Fund, Hydrocephalus Association (HA), Lori Poliski and Paul Gross; STARS-kids, Pediatric Hydrocephalus Foundation, University of Utah
- Member: Hydrocephalus Association Medical Advisory Board; Aqueduct Neurosciences, Inc. Board
- Co-founder, OmniShunts LLC
- President-Elect, Society for Research into Hydrocephalus and Spina Bifida

Recent MRI Applications in Animal Models of Hydrocephalus

Anatomical quantification of ventriculomegaly – critical for documentation of:

- inherent variability and severity especially in adult vs pediatric (fixed vs expandable skull)
- regional differences ventricular volume better than Evan's ratio
- temporal progression slow usually becomes chronic
- treatment outcome shunting & pharmacological intervention
- Fluid flow and pulsatility CSF & blood (capillary)
- White matter integrity DTI (cellular basis unknown)
- **Non-invasive ICP** large animals
- Biomechanics and compliance MR elastography

Current NEEDS for MRI in Animal Models of Hydrocephalus

- Physiological monitoring oximetry, temperature, HR, respiration, i.e. differential effects of anesthetics
- 2. Chronic studies, i.e. >100 days post-induction/treatment protracted ventriculomegaly, pediatric-adult progression

3. Resolution < 0.1mm

- detection of CSF obstruction sites importance of the Rekate classification
- ♦ catheter placement
- ♦ DTI of thinned periventricular white matter
- ♦ mouse models
- Cellular alterations, i.e. heterotopias, stem cell implants, fibrosis/ inflammation
- ♦ shunt obstruction
- **4. ICP measurements** important but very difficult in small animals
- 5. Biomechanical assessments compliance, ICP, DENSE technique?
- 6. Functional MRI vs behavioral measurements

Dorsal Hemisphere "Convexity" Obstruction

- Sprague-Dawley Female Rats, 225–250 g (3 mos.)
- 3.0 mm dia. bilat. craniotomies over cerebral hemisphere; A blunt tip 4-0 nylon suture inserted to separate partitions in the subarachnoid space (SAS)
- A blunt tip, curved needle (30G) inserted into SAS, 50–60 μ l of 25% kaolin solution injected at about 10 μ l per second
- Bone flaps replaced, secured in place with Surgicel[™], Survival period = 1-385 days

Kaolin Obstructs Basal Cisterns

Progression of Ventriculomegaly

Slow – Cortical

Rapid – Basal Cistern

Intracisternal Induction

Key Differences

- Expandable skull in neonate
- Severity may not be clinically relevant
- WM thinning DTI difficult/impossible
- WM edema
- Induction more difficult in neonate

* Modeling different developmental stages

Neonatal vs. Juvenile Rat Models

ersity of Utah
diatric NeurosurgeryRelative Severityof Ventriculomegaly & MRI Resolution

Figure 2 Mean diffusivity maps of hydrocephalic rats at postnatal day 11. The mid-sigittal image (A) shows the location of the five coronal slices (8-F) arranged from rostral to caudal. The expansion of the lateral ventricle and the posterior recess of the cerebral aqueduct (CA) can also be seen. Abbreviations: CC, corpus callosum: CPu, caudate-putamen; CX, cortex; EC, external capsule; FX, fomix; IC, internal capsule; HC, hippocampus; LV, lateral ventricle; PVWM, perventricular white matter.

Hannah Botfield, Ana Maria Gonzalez, Osama Abdullah, Anders Dæhli Skjolding, Martin Berry, James Pat McAllister II and Ann Logan. Decorin prevents the development of juvenile communicating hydrocephalus. *Brain* 136; 2842– 2858, 2013

Severity of Hydrocephalus

Is this "Hydrocephalus"?

Satish Krishnamurthy, Jie Li, Lonni Schultz, James P McAllister II. Intraventricular infusion of hyperosmolar dextran induces hydrocephalus: a novel animal model of hydrocephalus. *Cerebrospinal Fluid Research* 2009, 6:16

Hydrocephalus Association Workshop: Biomarkers in Hydrocephalus, Washington University, St. Louis, MO, June 28-29, 2014

Relative Severity of Ventriculomegaly

medicine

Abnormal development of NG2⁺PDGFR-α⁺ neural progenitor cells leads to neonatal hydrocephalus in a ciliopathy mouse model

Calvin S Carter^{1,10}, Timothy W Vogel^{2,10}, Qihong Zhang^{3,4}, Seongjin Seo^{4,5}, Ruth E Swiderski^{3,4}, Thomas O Moninger⁶, Martin D Cassell⁷, Daniel R Thedens⁸, Kim M Keppler-Noreuil³, Peggy Nopoulos⁹, Darryl Y Nishimura³, Charles C Searby^{3,4}, Kevin Bugge^{3,4} & Val C Sheffield^{3,4}

Relative Severity of Ventriculomegaly

Histological Features of LPA-induced Fetal Hydrocephalus

- Loss of ependymal layer
- Exposure of subventricular zone and neuroprogenitor disruption
- Ependymal neurorosette and hetertopia formation
- Cilary defects
- 3rd ventricle occlusion and/or aqueductal stenosis

Pharmacological Prevention of LPA-induced Fetal Hydrocephalus

 Ki16425, a receptor antagonist with proven specificity against LPA1 and LPA3 was injected intraventricularly at E13.5 before LPA exposure

 Ependymal disruption and neurorosettes were diminished 1 day later

Ventriculomegaly
prevented at postnatal day
25

fMRI vs Behavioral Assessments

Int. J. Devl Neuroscience 35 (2014) 7-15

and the second	Contents lists available at ScienceDirect
	International Journal of Developmental Neuroscience
SEVIER	journal homepage: www.elsevier.com/locate/ijdevneu

Kaolin-induced ventriculomegaly at weaning produces long-term learning, memory, and motor deficits in rats

Michael T. Williams^{a,b,*}, Amanda A. Braun^{a,b}, Robyn M. Amos-Kroohs^{a,b}, James P. McAllister II^c, Diana M. Lindquist^{b,d}, Francesco T. Mangano^{b,e}, Charles V. Vorhees^{a,b}, Weihong Yuan^{b,d}

* Division of Neurology, Civcinnati Children's Research Foundation, Cincinnati, OH 45229, United States

⁸ University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States

¹ Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah School of Medicine, Solt Lake City, UT 84132, United States

⁴ Division of Radiology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States 2 Division of Radiology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States

* Division of Pediatric Neurosurgery, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States

DTI at 21d post-kaolin

Morris water maze at 28d post-kaolin by Evan's ratio (ER)

Fig. 7. Morris water maze cued platform was examined at least 1 h after the probe trial on P49. The E80.71–0.82 animals were slower in locating the platform relative to the SAL animals (p< 0.0001). None of the other VM groups were different from the SAL animals.***p<0.0001, versus SAL.

Kim H, Moore SA, Johnston MG. Potential for intranasal drug delivery to alter cerebrospinal fluid outflow via the nasal turbinate lymphatics. *Fluids & Barriers of the CNS* epub 11(10), 2014

unnybrook

HEALTH SCIENCES CENTRE

IHIWG, Montreal, Quebec, Canada 05/23/14

Summary

Neuroimaging is essential for most animal studies

- inherent variability and severity especially in adult vs pediatric (fixed vs expandable skull)
- regional differences ventricular volume better than Evan's ratio
- temporal progression slow usually becomes chronic
- treatment outcome shunting & pharmacological intervention
- Need higher resolution
- Need cellular correlates of DTI
- Need non-invasive ICP measurements
- Need biomechanical and compliance studies

Many Thanks To You and My Colleagues

Kelley Deren-Lloyd, MS Ana Ann Hannah Gonzalez, PhD Logan, PhD Botfield, PhD Jack Walker, MD Pat McAllister, PhD

Translating Time Across Species

	Rat	Mouse	Rabbit	Ferret	Cat	Macaque	Human
Gestation in days	G21	G19	G31	G41	G65	G165	G270
	Birth	Birth	G25	P2	G47	G85	(G110)
Corpus Callosum Appears	G18	G16	G21	G36	G39	G72	G91

Clancy B et al, Translating developmental time across mammalian species, *Neuroscience* 105: 7-17, 2001.

Clancy B et al, Web-based method for translating neurodevelopment from laboratory species to humans, *Neuroinformatics* 5:79-94, 2007. http://www.translatingtime.net