Volumetric DESH vs Aqueductal CSF Stroke Volume in NPH

William G. Bradley, Jr, MD, PhD, FACR Professor and Chair Department of Radiology University of California, San Diego

DESH

- Disproportionately Enlarged Subarachnoid space Hydrocephalus
- Combination of enlarged Sylvian cisterns and tight superior convexities on midcoronal slice "useful" for predicting response to shunting for NPH (Hashimoto, et al, SINPHONI study)

First DESH Reference

- Cerebrospinal Fluid Res. 2010 Oct 31;7:18.
 doi: 10.1186/1743-8454-7-18.
- Diagnosis of idiopathic normal pressure hydrocephalus is supported by MRI-based scheme: a prospective cohort study.
- Hashimoto M¹, Ishikawa M, Mori E,
 Kuwana N;
 Study of INPH on neurological improvement
 (SINPHONI).

DESH

Hashimoto M, et al, CSF Research, 2010

DESH vs Tap Test

 Ishikawa, et al, paper in 2012 showed Tap Test didn't add anything if Evans Index > .3 and tight superior convexities

DESH vs Tap Test

- Fluids Barriers CNS. 2012 Jan 13;9(1):1. doi: 10.1186/2045-8118-9-1.
- The value of the cerebrospinal fluid tap test for predicting shunt effectiveness in idiopathic normal pressure hydrocephalus.
- Ishikawa M¹, Hashimoto M, Mori E, Kuwana N, Kazui H.

NPH Workup at UCSD

- Clinical presentation (triad)
- Routine MRI of Brain with
 - phase contrast CSF flow study through aqueduct for Aqueductal CSF Stroke Volume (ACSV)
 - Midcoronal T1 or T2 for DESH pattern
 - midsagittal FIESTA for AS
- Tap Test

Our Experience with Hyperdynamic CSF Flow in NPH

- 30 years ago: hyperdynamic CSF flow
 - flow void from foramen of Monro through obex
 - Correlation with shunt-responsive NPH: p<.003</p>
- 18 years ago: elevated ACSV had 100% PPV for shunt-response NPH
 - Elevated ACSV means they don't have atrophy
- More detail on how we calculate ACSV:

Quantitative CSF Flow Study

- 512x512; 16 cm FOV
- .32 mm pixels
- 4mm slice angled perpendicular to aqueduct
- Velocity-encode in slice direction
- Retrospective cardiac-gating (not EKG triggering)

Quantitative CSF Velocity Imaging

Quantitative CSF Flow Study

- Through-plane flow-encoding
- Venc= 10, 20, 30 cm/sec (NPH)
- Venc= 5 cm/sec (shunt malfunction)

Quantitative CSF Velocity Imaging

Slice Position: SP-F22.4	Region: 1
Range,ms: 0 to 1263	Venc Adjustment -20 cm/sec 20 cm/sec
Body Surface Area (BSA):	m^2
Velocity	
Peak Velocity:	15.14 cm/sec
Average Velocity:	-0.004 cm/sec
Flow	
Average Flow Over Range:	-0.001 ml/sec
Average Flow Per Minute:	l/min
Forward Volume:	0.255 ml
Reverse Volume:	0.255 ml
Net Forward Volume:	-0.001 ml
Net Forward Volume / BSA:	ml/m^2
Area	
Average Area:	0.150 cm^2
Mininum Area:	0.150 cm^2
Maximum Area:	0.150 cm^2

Normal ACSV on our scanners is 0.040 ml (40 uL) We call hyperdynamic flow when 2x normal

Materials and Methods

- 20 Patients (age 54-85)
- Suspected NPH
- Routine MRI of Brain
- Quantitative CSF Velocity Imaging
- VP Shunt
- Follow up at 1 month

Bradley WG, et al, "Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging" Radiology 198:523-529, 1996.

Results

- Of 20 shunted patients:
- 14 had hyperdynamic flow
 - (SV>42 microliters; NB: machine specific!)
 - 13 had a good surgical response
 - 1 did not (chronic MS)
- 6 had normal or decreased flow
 - (SV<42 microliters)</p>
 - 3 had a good surgical response
 - 3 did not (concomitant atrophy)

Bradley WG, et al, "Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow mesurements at MR imaging" Radiology 198:523-529, 1996.

How Does DESH Compare to Aqueductal CSF Stroke Volume?

- 30 patients with clinical NPH and elevated ACSV with midcoronal T1 or T2
- How to quantify "tight superior convexity subarachnoid space"?
- Segmented CSF volumes for midcoronal slice (n=30) vs full AP extent (n=20) of Sylvian cistern
- SAS defined by line connecting superior convexity gyri; sulci measured separately

Measured Variables for DESH vs ACSV

- Stroke volume vs DESH volume (midcoronal slice and full AP volume of Sylvian cistern)
 - Sylvian cistern volume/high convexity volume
 - (Lat vent + Sylvian)/high convexity volume
 - Lateral vent + Sylvian cistern volume
 - Sylvian cistern volume
 - High convexity volume
 - Superior sulci volume

Volume: Sylvian/high convexity vs ACSV

Not expected. As Syl/high goes up, SV should go up

Midcoronal: Sylvian/high convexity volume vs ACSV

Ratio:Sylvian/High Convexity vs Stroke volume

Better on single slice but still....

Volume: (lateral vents+Syl)/high convexity

Lat+Sylvian/High Convex vs Stroke Volume

y = 0.0024x + 12.179 $R^2 = 0.0002$

- Lat+Sylvian/High Convex vs Stroke Volume
- Linear (Lat+Sylvian/High Convex vs Stroke Volume)

Surprisingly worse

ACSV

Midcoronal: Lat vent vs ACSV

Lateral Ventricle volume vs Stroke volume

Larger ventricular drum head

Midcoronal: Lat + Sylvian vs ACSV

Larger ventricular drum head again; surprising that adding Sylvian cistern volume improves correlation

Volume: High Convexity vs ACSV

Would have expected increased SV to correlate with smaller convexity vol

Midcoronal: High Convexity vs ACSV

High Convexity vs Stroke volume

Now it is going down on single slice, ie, increased SV correlates with tight convexities

Midcornal: Sulcal Volume vs ACSV

Sulci volume vs Stroke volume

Expected: stroke volume goes down with atrophy

Volume: Superior Sulcal Volume vs ACSV

Sulci vs Stroke

Same thing with full volume

P values

Volume	Pearson	P-value	R ²
Lat+Sylvian vs Stroke volume	.354	.051	0.12526
High Convexity vol/Stroke Volume	.123	.509	0.01518
Lateral ventricle vs Stroke volume	.424	.018	0.17953
Ratio:Sylvian/High Convex vs Stroke volume	067	.720	0.0045
Ratio: Sulci vol/High Convex vs Stroke volume	081	.666	0.0065
Lat.+ Sylvian/High Convexity vs Stroke volume	.077	.671	0.00592
Sulci CSF volume Vs Stroke volume	151	.417	0.02289
Sylvian Fissure volume vs Stroke volume	045	.081	0.00203

Conclusions

- The combination of large Sylvian cisterns and tight superior subarachnoid space (DESH pattern) does not appear to correlate with Aqueductal CSF Stroke Volume for predicting shunt-responsiveness in NPH
 - Using segmented volumes from mid-coronal slice or
 - Using volumes from Sylvian cistern front to back
- Reason: different populations?, small sample size?

Midcoronal: Sylvian vs ACSV

Sylvian Fissure vs Stroke volume

Full Volume: Sylvian Cistern vs ACSV

Sylvian vs Stroke

Volume: Sulci/ high convex SAS vs ACSV

Sulci/High vs Stroke volume

Not sure what to do with this