Effects of CSF pressure waves on the spinal cord tissue

Karen Støverud, Kent-Andre Mardal, Hans Petter Langtangen & Victor Haughton San Diego, May 2013

Hyphothetically, pressure waves causes fluid and tissue movement in the cervical spinal cord

- ✓ Current studies on pressure waves
- Assume porous & elastic spinal cord
- Comparison with linear elasticity

An obstruction in the subarachnoid space (SAS) attenuates and delays pressure waves

Williams: c≈ 13 m/s

Kalata (MR): **c** ≈ **4.5 m/s**

Lockey et al (1975)

Co-axial tube models have been used to study pressure wave propagation in the subarachnoid space

- ✓ Berkouk & Carpenter (2003)
- ✓ Lockey (1975)
- ✓ Cirovic (2009)

Min. wave speed: c ≈ 2 -13 m/s

Berkouk et al (2003)

CSF flow and pressure has also been studied in fluid structure interaction of the spinal canal

Bertram: c = 12 m/s

Martin: c = 2 - 26 m/s

Bertram (2009)

The SAS and central canal is hydraulically connected through perivascular spaces

Rigid Tube (Dura Mater)

A (SSS)

B (I: Syrinx, II: SC)

Flexible Tube (Pial Membrane)

(b) l_{PVS} A (SSS)

Elliott et al (2011, 2012)

$$c = 5.6 \text{ m/s}$$

Geometric model of spinal cord based on DTI images of sheep spinal cord

A traveling wave based on intracranial pressure measurements is applied along the walls of the model

c ≈ 2 m/sec

The spinal cord tissue is modeled as a poro-elastic medium

The Biot equations for incompressible solid and fluid phase

Volume balance:

$$\nabla \cdot \left(\frac{\partial \mathbf{u}}{\partial t} - \frac{\mathbf{K}}{\mu_w} \nabla p \right) = 0 \quad \text{in} \quad \Omega$$

Momentum balance:

$$\nabla \cdot (\boldsymbol{\sigma} - p\mathbf{I}) = 0$$
 in Ω

Stress tensor:

$$\sigma = 2\mu\epsilon + \lambda(\mathrm{tr}\epsilon)\mathbf{I}$$

Strain tensor:

$$\boldsymbol{\epsilon} = \frac{1}{2} (\nabla \mathbf{u} + \nabla^T \mathbf{u})$$

$$\mathbf{v}_f = \frac{\partial \mathbf{u}}{\partial t} - \frac{\mathbf{K}}{\mu_w} \nabla p$$

$$\mathbf{v}_D = -\frac{\mathbf{K}}{\mu_w} \nabla p$$

We apply the traveling wave as a boundary condition along the walls of the geometry

Volume balance:

$$p = p_0(z + ct) \qquad \text{on}$$

on Γ_7

$$u_z = u_\theta = 0$$

VII

Gamma

It is common to assume the spinal cord to behave as a single solid phase

Comparison with linear elasticity: Is it important to

include the fluid phase in the model

Poro-elasticity

Linear elasticity

Pressure gradients occur since the pressure wave arrives at different times along the spinal cord

Movement of solid cord tissue produces interstitial fluid flow

Time: 0.8500 s

The pressure wave drives movement of fluid in the central canal of the spinal cord

In conclusion, pressure waves affect the tissue and fluid movement within the spinal cord

Velocity central canal >> Velocity tissue

Poro-elasticity # Linear elasticity

Role in the pathogenesis of syrinx need more study

(C) Center for Biomedical Computing

In this presentation we use a poroelastic model to simulate how pressure waves spread in the spinal canal

Abnormal Pressure

Poroelasticity

Comparison with linear elasticity

We use continuous pressure measurement from the cranial and lumbal region to define a traveling wave

$$p_0(z,t) = p_0(z+ct)$$

The effects of pulsatile CSF pressure on the spinal cord tissue

$$p_0(z,t) = p_0(z+ct)$$

