NPH and Macrocephaly

William G. Bradley, MD, PhD, FACR Professor and Chair Department of Radiology University of California, San Diego wgbradley@ucsd.edu

Benign External Hydrocephalus

Benign External Hydrocephalus

Tectal Glioma

How does the CSF get out??

NPH

Proposed Causes of CSF Motion

- Production by choroid plexus (500 ml/day)
- Cardiac pulsations
 - Choroid plexus (Bering, 1959)
 - Large arteries
 - Cerebral hemispheres (phase-contrast MRI)

CSF Flow Void vs. Surgical Response

- 20 patients shunted for presumed NPH (1984)
- All had gait disturbance and dementia
- 17/20 had incontinence

NPH vs CSF Flow Void

- Surgical Response graded (1984)
 - Excellent-good
 - Fair-poor
- CSF flow graded (1989)
 - Absent-mild
 - Moderate-severe

Materials and Methods

- Surgical Response Compared to:
- CSF Flow Void on Routine MRI
 - **-1984**
 - No flow compensation

Normal (1984)

Hyperdynamic flow (1984)

CSF Flow Void

Minimal

Marked

Good

Surgical Response

Poor

Markeu	IVIIIIIIIIII
8	
2	9

Fisher's
Exact Test
p<.003

To shunt or not to shunt (1984)

Bradley WG, et al, "Marked CSF flow void: an indicator of successful shunting in patients with suspected normal pressure hydrocephalus" Radiology 178:459-466, 1991.

Communicating Hydrocephalus: Diastole

Communicating Hydrocephalus Systole

Enlarged Sylvian cisterns in NPH

Phase Contrast CSF Velocity Imaging

- "Velocity" is speed plus direction
- Flow sensitization along craniocaudal axis
 - Flow up: shades of black
 - Flow down: shades of white
 - No flow: gray
 - Set aliasing velocity
 - Quantification of velocity or flow

Qualitative CSF Velocity Imaging

Quantitative CSF Flow Study

- 512x512; 16 cm FOV
- .32 mm pixels
- 4mm slice angled perpendicular to aqueduct
- Velocity-encode in slice direction
- Retrospective cardiac-gating (not EKG triggering)

Quantitative CSF Velocity Imaging

Quantitative CSF Flow Study

- Through-plane flow-encoding
- Venc= 10, 20, 30 cm/sec (NPH)
- Venc= 5 mm/sec (shunt malfunction)

Communicating Hydrocephalus

Quantitative CSF Flow

- GE: Cine PC 40/min/30 degrees
- Siemens: Retrospective Cardiac Gating
 - Flash 100/10/15 degrees
- Both: 18 Cine Frames

Quantitative CSF Velocity Imaging

cm/sec

ml/sec

Quantitative CSF Velocity Imaging

- Calculates "Aqueductal CSF stroke volume"
- Stroke volume: microliters of CSF flowing back or forth over cardiac cycle
- Verified by pulsatile flow phantom using ultrasound flow meter (Mullin, 1993)

NOVA 4D CSF FLOW

Materials and Methods

- 20 Patients (age 54-85)
- Suspected NPH
- Routine MRI of Brain
- Quantitative CSF Velocity Imaging
- VP Shunt
- Follow up at 1 month

Bradley WG, et al, "Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging" Radiology 198:523-529, 1996.

Results

- Of 20 shunted patients:
- 14 had hyperdynamic flow
 - (SV>42 microliters; NB: machine specific!)
 - 13 had a good surgical response
 - 1 did not (chronic MS)
- 6 had normal or decreased flow
 - (SV<42 microliters)</p>
 - 3 had a good surgical response
 - 3 did not (concomitant atrophy)

Bradley WG, et al, "Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow musurements at MR imaging" Radiology 198:523-529, 1996.

NPH (SV = 121 uL)

Results

 Only 7 of 14 (50%) patients with hyperdynamic flow had prominent aqueductal CSF flow void or routine MR images

Ubiquitous Flow Compensation; FSE

What Causes Idiopathic NPH?

- Consider normal bulk flow of water in brain
- Consider association of deep white matter ischemia (DWMI) and NPH

Normal Bulk Flow of Extracellular Brain Water

- Water leaves upstream arterioles under pressure-osmotic gradients (eg, mannitol)
- Normal and excess water resorbed by downstream capillaries and venules
- Vasogenic edema flows centripetally to be absorbed by ventricles
- Interstitial edema flows centrifugally to subarachnoid space via extracellular space

Idiopathic NPH and DWMI

- Both diseases of elderly
- Significant association now shown by many
- CBF reduced in NPH and DWMI
- Acetazolamide challenge: no increase in CBF
 - Arterioles already maximally dilated (esp WM)
- DWMI more extensive than T2 abnormality
 - Magnetization transfer ratio decreased
 - Apparent diffusion coefficient increased
 - Increased lactate on proton spectroscopy

Possible Etiology of iNPH

- Hypothesis: NPH patients have always had large ventricles ("slightly enlarged")
 - Decreased CSF resorption (saline infusion test)
 - Unrecognized benign external hydrocephalus?
- No evidence for previous SAH or meningitis
- Significant CSF resorption pathway is via extracellular space of brain (like tectal gliomas)
- Everything fine until "second hit": DWMI
- Bradley WG, Neurosurgical Clinics of North America 36:661-684;2001

DWMI is "Second Hit" in NPH

- No symptoms until DWMI occurs later in life
- Resistance to peripheral CSF flow through extracellular space increases slightly due to DWMI
 - loss of myelin lipid: more hydrophilic environment
 - Greater attraction of outflowing CSF to myelin protein
- CSF production continues unabated
 - Accumulates in ventricles -hydrocephalus worsens
 - Increased tangential shearing forces
 - NPH symptoms begin
- Bradley, WG Neurosurgical Clinics of North America 36:661-684;2001

Normal 4th ventricular Outflow of CSF

Reduced 4th ventricular Outflow of CSF

Increasesd CSF Outflow through 4th Ventricle and Extracellular Space

Normal Suction Low Resistance Good Flow Normal Suction High Resistance Low Flow Normal Suction Lower Resistance Better Flow

Increasing Resistance to Extracellular CSF Flow vs Ventricular Volume

Hypotheses

- If NPH patients had benign external hydrocephalus before 1 year of age, their intracranial volumes should still be larger than sex-matched controls
- If they rely on drainage of CSF through the extracellular space of the brain, the ADC should be elevated for a given degree of DWMI

Materials and Methods

- Intracranial volumes measured from T2WIs using workstation (Vital Images)
- 22 men with clinical NPH vs 55 controls
 - Ave stroke volume: 159 uL (normal: 42 uL)
- 29 women with NPH vs 55 controls
 - Ave stroke volume: 127 uL

- Bradley WG, et al, "Increased Intracranial Volume: A Clue to the Etiology of
- Idiopathic Normal-Pressure Hydrocephalus?" AJNR 25:1479-1484, 2004

Results: Intracranial Volumes

- NPH men (n= 22): 1682 cc
- Control men (n=55): 1565 cc
- NPH volumes significantly larger (p<.003)
 - 117 cc (7.5%)
- NPH women (n=29): 1493 cc
- Control women (n=55): 1405 cc
- NPH volumes significantly larger (p<.002)
 - -88 cc (6.5%)

Implication

- Patients with "slightly enlarged ventricles" for no apparent reason should be observed carefully for onset of gait disturbance in later years
- Probable window of opportunity to treat

ADC: NPH vs Controls

- Apparent Diffusion Coefficient (ADC) profile in 10 pixel wide coronal sections through axial slices through upper lateral ventricles
- ADC measurements in centrum semiovale controlled for a given degree of DWMI

ADC Profile: NPH vs Control Anterior Coronal Location

Blue: NPH Red: Control

ADC vs NPH vs Control

67 yo man will be shunted for NPH in 19 years; currently walking 20 miles a day

1985: Still no NPH symptoms (now age 70)

1991: Pt (now 76) will development NPH in 10 years

91/0603

23 MAY 91 ME 2DFT

MAST

TR: 2475 TE: 20

RF: 90dea

FOV: 25cm TH: 7.0mm

PCS

220 x 256

NSA: 1 5.2mn/40

ACQ: JZ3

23 MAY 91 ME 2DFT

MAST

TR: 2475

TE: 20

RF: 90deg

FOV: 25cm

TH: 7.0mm

PCS

220 x 256

NSA: 1 5.2mn/40

REF: I1

Follow up

Testimonial from 86 yo physician with NPH

- Dr Bradley,
- Your optomistic verbal report to me re: the result of my CSF flow study proved accurate. Ventriculo-peritoneal shunt resulted in substantial improvement. Would it be possible for me to receive a written report for my records.

Thank you.

55 yo r/o Metastatic Melanoma: Future NPH Patient?

Conclusions

- NPH diagnosed by symptoms, not MRI
- MRI used to confirm diagnosis of shunt-responsive NPH
- Asymptomatic patients may have dilated ventricles and elevated CSF flow: Pre NPH?
- Not everyone with benign external hydrocephalus gets NPH
- Keep your extracellular space open

