

Phantom Model of Intracranial Dynamics

Simone Bottan, Dimos Poulikakos and Vartan Kurtcuoglu

ETH Zurich, Laboratory of Thermodynamics in Emerging Technologies

Background

- Computational and analytical models can give otherwise not available insight into intracranial dynamics
- Such models allow for variation analysis of individual factors that influence intracranial pressure (ICP) and cerebrospinal fluid (CSF) flow
- However, they are not ideal for evaluate medical devices that influence ICP and CSF dynamics
- Animal and human studies are expensive, and raise ethical concerns

Objectives

- To develop a modular phantom platform for evaluating, improving and developing medical devices that influence intracranial dynamics
- To validate an initial configuration of this phantom for the reproduction of normal physiologic conditions

Bottan et al. (2012), IEEE T Biomed Eng, E-Pub ahead of print

Phantom Model Setup

Cranial Space

Cranial Space

- Skull: Generic plastic model
- Brain: Sylgard 527 Silicone *, **

* Ma et al. (2010), Comput Method Biomech 13:783ff
** Brands et al. (1999), 43th Stapp Car Crash Conf

Ventricular System

Ventricular System

Subarachnoid Space / Cisterns

- Volume estimated based on MRI data
- Hydraulic resistance estimated based on flow simulations

Gupta et al. (2010), J Royal Soc Interface 7:1195ff

Gupta et al. (2009), ASME J Biomech Eng 131:021010

Cisterns

V = 24 ml

Vartan Kurtcuoglu, ETH Zurich

Phantom Model of Intracranial Dynamics

Subarachnoid Space

Compliance Model via Pneumatic Chamber

- Total compliance 1mm/mmHg
- Compliance distribution: 35% cranial, 65% spinal

Approximation of Intracranial Dynamics

Vartan Kurtcuoglu, ETH Zurich

Approximation of Intracranial Dynamics

Removal of Cranial Compliance

Conclusion

- Novel phantom that approximates normal physiologic intracranial dynamics
- Modular concept allows for expansion, addition of detail or simplifications as needed

Bottan et al. (2012), IEEE T Biomed Eng, E-Pub ahead of print

Acknowledgements

Special Thanks

- Harold Rekate
- Bill Bradley

Team

- Simone Bottan
- Marianne Schmid
- Verena Knobloch
- Bercan Siyahhan

Funding

- Swiss National Science Foundation
- Swiss Commission for Technology & Innovation

Material Support

Codman&Shurtleff

Collaborators

- Axel Lang, University of Zurich
- Michaela Soellinger, Medical University Graz
- Peter Boesiger, University of Zurich