

The special case of infantile hydrocephalus

Charles Raybaud
Hospital for Sick Children, University of Toronto
charles.raybaud@sickkids.ca

IHIWG/ASNR New York April 26-27, 2012

- In children, hydrocephalus most prevalent in first year
- Late-recognized congenital hydrocephalus not uncommon
- Brain in infant protected by skull expandability
- Development-related vulnerability: on-going cellular proliferation, connection/synaptogenesis, myelination etc.
- Some etiologies particular to this age have specific brain morbidities

Infantile hydrocephalus (159 cases, malformations excluded)

•	IVH (prematures)	34	21%	
•	Infection	22	13%	complex
•	Vascular (eg: v of G)	6	4%	
•	Midline cysts	15	9%	
•	Tumors	17	11%	simple
•	Chiari I	9	6%	
•	Parenchymal bleed	9	6%	
•	Aqueduct (not tumor)	12	8%	
•	4V-cisternal	19	12%	unknown
•	Congenital	14	9%	

Prematures are not fetuses

- pericerebral spaces wide in fetuses, not in premies
- amniotic pressure in fetuses, expandable skull in premies
- CBF low in fetus/newborn, steep increase < two weeks irrespective of GA

Kehrer et al. Ultrasound Med Biol 2004, 30, 283-7

Specificities of the immature brain

- Brain water and CSF
- 2. Cellularity
 - 1. germinal matrices
 - 2. oligodendroglia
 - 3. ependymal lining
- 3. Connectivity and synaptogenesis
- 4. Vessels: developing, immature, venous pattern incomplete

1 - Brain water and CSF

- Large extracellular spaces in infants
 - water in WM: 90% fetus/neonate, 75% mature
- Different CSF dynamics
 - no flow void in aqueduct and expandable skull
 - allows for external hydrocephalus
- Assumedly no arachnoid granulations in neonates

mature

newborn

1-month

newborn

2 months

3 months

normal T1 1 month

11 months

Interstitial edema more extensive in infants

- Intersitial edema reaches the cortex in infants
 - venous drainage: subcortical incomplete, subependymal exposed
 - diffusion easier in unmyelinated brain
 - diffusion distance shorter from ependyma to cortex

2 - Cellularity of immature brain

- Pool of ependymocytes: +/- complete by midgestation
- Germinal matrix of mantle: disappears < 27w
 - late neuronal migration to superficial cortical layers
- Germinal matrix of ganglionic eminence: thickest at 25w, disappears < 36w
 - late GABAergic interneurons and thalamic neurons
- Oligodendroglia
 - intense proliferation until birth
 - myelination from 36w to well after birth

Del Bigio M, Brain 2011, 134:1344-61

3 - Development of connectivity

- Until midgestation, all axons connected to transient targets
 - subplate, internal capsule, brainstem
- From 22 to 47w, collaterals multiply and reach cortex in sequential manner
 - layer 4: thalamocortical 22-27w
 - layers 2-3: intracortical and long association commissural 27-32w
 - layers 2-3: short association (U-fibers) 32-47w

28w

4 - Early brain vascularity

- Germinal matrices from 8 to 36w
- Cortex, stepwise from depth to surface, from 22w to 47w
- Arterial perforators transcerebral from surface to ventricle
- Venous drainage, three components
 - transcerebral from ventricle to surface (5w to 36w), only few persist
 - subependymal to vein of Galen (9w to mature)
 - transcortical to surface (22w to mature)

In summary

- Specific causes expose parenchyma to specific damages
 - IVH: destruction of GM
 - decreased cortical, thalamic cellularity
 - Impaired venous drainage
 - IVH, infection: ependymal, choroidal fibrosis \
 - altered blood-CSF-parenchymal exchanges
 - infectious toxins: parenchymal inflammatory cascade
 - arterio-venous shunts: perfusion steal, high venous pressure, dual hydrocephalus

In summary

- Hydrocephalus exposed to time-specific developmental complications
 - perfusion impact of parenchymal distension on
 - developing parenchyma: 23-32w
 - germinal matrices: <36w
 - oligodendroglial proliferation, myelination: 28w-years
 - synaptogenesis and GM selective vulnerability: around term
 - impact of perfusion changes, interstitial edema, fiber-stretching on
 - axonal path-finding: 22w-years
 - period of possible reversibility (limits?)

Conclusion

- Hydrocephalus among children is most prevalent in infants
- Brain somewhat protected by expandable skull
- High vulnerability to developmental impairment
 - mechanically from hydrocephalus itself
 - parenchymal perfusion, ependymal tears, fiber stretching, interstitial edema
 - germinal, oligodendroglia, organizing gray matter, connectivity
 - as well as from some of its causes
 - hemorrhage, inflammation, A-V fistula
 - evolutivity (slow-fast), severity, duration